小学数学分类思想的意义和教学策略_1

网上科普有关“小学数学分类思想的意义和教学策略”话题很是火热,小编也是针对小学数学分类思想的意义和教学策略寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...

网上科普有关“小学数学分类思想的意义和教学策略”话题很是火热,小编也是针对小学数学分类思想的意义和教学策略寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

小学数学分类思想的意义和教学策略 篇1

 一、相关研究综述

 分类思想是一种基本的数学思想。它是根据一定的标准,对事物进行有序划分和组织的过程。

 关于分类思想的具体作用,强振宇、杨磊认为当知识积累到一定的程度就需要运用分类、归纳的思想来帮助学生建构自己的知识网络,以及能够增强思维的缜密性和提高解题的能力。郑毓信认为分类能够为相应的抽象提供必要的基础和为如何逐步深入地去开展认识指明可能的途径。

 关于如何渗透分类思想,强振宇、杨磊认为在教学中进行数学分类思想的渗透, 应挖掘教材提供的机会,把握渗透分类思想的契机;通过掌握合理的分类方法来理清数学知识;引导学生进行分类讨论来解决复杂的问题。顾争光认为应挖掘学生的生活经验,应把学生生活中的分类经验迁移到数学中来;分类思想只有通过不断的思考、运用,才会被内化成学生自己的东西,形成数学方法;教学时要灵活运用分类思想,注重训练学生思维的条理性和概括性,促进分类思想方法的形成。吴振金认为重点让学生学会选择不同分类标准的方法,从而培养学生思维的开阔性和灵活性。 郑毓信教授认为应引导学生根据数学的量性特征进行分类。

 二、小学数学分类思想的意义

 分类能力的发展反映了学生思维发展,特别是概括能力的发展水平。它既是学生逻辑思维能力发展的重要方面,又对促进学生逻辑思维能力的发展具有重要作用。

 1.为数学抽象提供必要的基础。

 分类需要对客观事物进行分析、比较,并抽象概括出事物的一般特点与本质属性。具体来说,儿童需先具体地判断对象的相同与不同之处,将某些对象看成同类或将一些东西看成同类(归类),即主要集中于对象的某个(些)特征,并认为是这些事物的共性所在,而对其他一些属性暂不考虑。也就是说分类思想的一个重要作用就是为相应的数学抽象提供了必要的基础。

 2.为深入认识指明可能的途径。

 如果说归类主要突出了事物的共同点,那么,不同类别的分类的作用就是为如何逐步深入地去开展认识指明了可能的途径,从这一角度我们可以重新来理解对三角形进行分类的意义,即为什么将三角形区分为直角三角形和非直角三角形(锐角和钝角三角形)、等腰三角形和非等腰三角形。因为这就为我们按照由特殊到一般地深入研究三角形提供了可能的途径。

 3.为达到高级思维奠定基础。

 加涅的智慧技能的学习过程和条件的层级关系是:辨别→(以辨别为条件)具体概念→(以具体性概念为条件)概念→(以定义性概念为条件)规则→(以规则为条件)高级规则,由于分类活动往往涉及到辨别,因此学习往往可以从分类开始,然后在基础上抽象为具体概念和定义性概念,最后为形成规则和高级规则奠定思维基础。

 4.形成完善合理的知识结构。

 分类往往是为了建立一定的序,因此知识积累到一定程度,运用分类思想能够帮助学生有条理、有顺序,并且不重复、不遗漏地归纳整理知识,形成完善合理的知识网络图。学习心理学的研究表明,良好的知识结构对于提取知识和解决问题是十分重要的。

 5.发展儿童的组织策略。

 组织策略即根据知识经验之间的内在关系,对学习材料进行系统、有序的分类、整理与概括,使之结构合理化。应用组织策略可以对学习材料进行深入的加工,进而促进对所学内容的理解与记忆。可见学会分类是发展组织策略的重要前提。研究表明,小学中低段儿童虽然不能自发地产生和运用组织策略,却能通过一段策略训练后学会使用组织策略。通过数学学习渗透分类思想后,可以发展儿童的组织策略,并迁移到其他学科的学习中去。

 三、小学数学分类思想的教学策略

 分类思想贯穿整个小学数学阶段,教师要挖掘教材中隐含的分类思想,向学生渗透分类思想。例如,教材在一年级通常安排将生活中的事物进行分类,体会按不同标准分类,结果不同;认识物体时,将长方体、正方体、圆柱和球进行分类……教师在教学时可以采取以下策略:

 1.用分类活动引入新知识。

 从学习心理学角度来看,在低年段往往通过设置具体的分类活动,使学生通过概念形成,达到不严格的具体性概念阶段。如在“认识三角形和四边形”时,可以出示点子图,根据图形是否为封闭图形分为封闭和不封闭图形;在封闭图形中,根据图形有几条线段围成的,分为三角形、四边形、五边形三类。

 到了中高年段,则可以适时地根据学生的思维能力来逐渐地通过概念同化形成定义性概念,从而促进学生的抽象思维发展水平。如在引入平行线的概念时,不少是通过日常生活中的具体事例介绍,再经抽象概括形成“平行线”的概念。因此,可以通过让学生将同一平面内两条线段的关系进行分类,得到有交点和没有交点的两种情况,从而认识同一平面内的两条直线只有有交点和没有交点的两种位置关系,这就为通过概念同化来定义平行线做好了充分的铺垫。

 另外在引入概念时,教师应适时地引导学生思考为什么要这样的分类,怎样分类更合理。例如 “三角形分类”的教学,应该将重点集中于“为什么要这样的分类”“怎样分类较为合理”,而不应在“角的度量”等实践活动上花费过多的时间和精力。教师可首先对角的分类情况作出回顾,特别是提醒:在各种角中直角是较为特殊的,而后引导学生思考三角形如何分类,并引导学生对这一种分类方法的合理性作出具体分析,特别是,第一,是否存在交叉重复的情况,即如一个三角形既是直角三角形,同时又是锐角三角形?第二,分类是否有遗漏,也就是说,是否可能存在这样一个三角形,它既不是直角,也不是锐角活钝角三角形?

 2.用分类思想归纳整理知识。

 当知识积累到一定程度往往需要用分类来归纳所学的知识,到了中高年级尤其如此,因此需要学生掌握合理的分类方法,满足互斥、无遗漏、最简便的原则,以形成完善合理的知识网络。

 在小学阶段,学生需要掌握的内容,根据数学分类的方法常有以下几种:

 (1)根据数量特征和数量关系进行分类。如整数、小数、分数的分类,运算法则的分类,等等。

 (2)根据图形的特征或相互间的关系进行分类。如三角形按角分类,有锐角三角形、直角三角形、钝角三角形。

 (3)根据解决问题的探索方向进行分类。如:直线行程问题和环形行程问题,,可以看出来他们在解决问题的方法上有相似性。

 为了使学生形成良好的知识结构,用分类归纳整理时,往往需要同时借助比较、对比、举例等方法来突出各个知识间的区别和联系,补缺查漏,消除错误的知识印象。为了更加形象直观,也往往借助表格、图表等表示,如“韦恩图”就是个很好的工具。

 另外,在运用分类思想整理归纳知识时,教师应引导学生自主构建知识网络。

 3. 用分类思想解决问题。

 利用分类思想解题是小学数学中一个重要且有效的解题方法。它的关键在于正确分类,做到既不重复又不遗漏,并能有效纠正学生的无序性甚至盲目拼凑的毛病,培养学生慎密的思维。

 例如,用 1、2、3 三个数字卡片可以排成几个三位数,让学生做一做,排一排。有的学生很快排出来了,但有些学生却排不完整。这时教师要指导学生分类讨论,首先确定百位上的数字是1时,有哪几个三位数?(123、132),百位上的数字是2时,有哪几个三位数?(213、231),百位上的数字是3时,有哪几个三位数?(312、321)。

 4.根据数学的量性特征进行分类。

 郑毓信教授认为,因为数学抽象的特殊性,决定了在数学分类中我们所关注的只是对象的量性特征即数量关系和空间形式等,而完全不去考虑它们质的内容。举例来说,在有关分类教学时,教师往往首先拿出事先准备好的一些模块,其中不仅呈现出了各种不同的形状,如三角形、四边形、圆形等,而且也被涂成了各种不同的颜色,如红色、**、绿色等,并且它们是用一些不同的材料制成的,包括木制的、硬纸片的、塑料的等,教师要求学生对这些模块进行分类。在一般情况下,学生往往会给出多种不同的分类方法,教师对此往往也会普遍地加以肯定,甚至还会积极地鼓励学生去提出新的、更多的分类方法。然而在数学抽象中,我们所关注的是对象的量性特征(包括数量关系和空间形式等),而完全舍弃了 “非数学成分”(质的内容),因此只有将所有三角形的模块归成一类、所有四边形的模块归成另一类,才可以看成是与数学直接相关的,而其他的一些分类方法,如按照颜色、材料去进行分类等,就都不是数学所主要关注的分类。因此我们不应同样地去肯定各种可能的分类方法,而应对学生所给出的各种方法作出必要的“优化”。

小学数学分类思想的意义和教学策略 篇2

 《三角形的分类》是小学四年级学生在对三角形有了初步认识之后进行的教学活动。我认为分类是一种数学思想,它是根据一定标准对事物进行有序的划分和组合的过程,三角形的分类在于给学生一种数学模型,为学生今后更好地应用三角形,进一步认识和研究三角形奠定知识基础。为了在课堂上有效地整合落实三维目标,我是这样设计的:

 (一)、创设情境 激趣导入

 上课伊始, 我先创设了一个数学情境,让学生给教室里的学生按一定标准分类,(小组讨论)如:按性别 可分为男生和女生;按小组 分 ...... 按年龄分 ......目的让学生为多角度地给三角形分类做好铺垫,为学生营造了愉悦的情感心境,使学生自然而然地进入最佳的学习状态。

 (二)、动手探究 合作交流

 一节课的教学,重在引导学生动手操作,将学生自己动手剪的三角形进行分类,探究分类方法,学生在探究三角形分类过程中,我首先改变知识的呈现方式,让学生带着问题去动手操作、观察、推理、验证、归纳。引导学生自主探索,合作交流,在交流中发现问题。学生动手操作,把三角形按角分:三个角都是锐角的三角形、有一个角是直角的三角形、有一个角是钝角的三角形,然后引导学生分别起名字。我再用集合的形式加以总结归纳。然后提出问题:还能怎么分?学生有提出按边分。通过测量边的长短,学生把三角形分为三类:分别是等腰三角形、等边三角形、不等边三角形。师生共同认识等腰三角形、等边三角形。教学后又完成了部分概念题,让学生对概念又了进一步的认识。学生在巩固所学知识的过程中,既培养了动手能力”,又注重思维能力的培养,让学生在综合运用所学的知识和技能解决问题,发展学生的应用意识,实践能力与创新精神。三角形的分类是让学生用内心创造与体验学习数学乐趣,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程。

 (三)、 巩固知识 提高能力

 我设计了由浅入深、循序渐进的巩固复习题,让学生始终在愉悦的学习氛围中巩固知识、拓展思维,使知识与技能、过程与方法、情感态度与价值观三个维度的目标相辅相成,融为一体,力求达到实现三维目标的整合。

小学数学分类思想的意义和教学策略 篇3

 一、对教材的分析和学生的认识

 1、教材分析

 关于“角”,学生在二年级已有初步的接触,但是大都属于直观的描述,现在是在二年级的基础上恰当抽象出图形的特征,系统学习角的概念、角的度量、角的分类和角的画法等等。角的分类是在学生已初步认识角,会用量角器量角的基础上进一步认识平角、周角,根据角的度数分类,区分直角、平角、锐角、钝角和周角。

 2、学生分析

 学生在日常生活中接触了很多的大小不同的角,但对常见的角的分类的知识,生活中接触很少,显得比较抽象。小学四年级的学生抽象思维虽然有一定的发展,但依然形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。

 二、教学体会

 而数学来源于生活,我们的日常生活就是学习数学的大课堂,是探索问题的广阔天地,把所学的知识运用到生活实践中,是数学学习的最终目的。因此,我从生活实际出发,让学生自己捕捉生活素材,然后从生活经验和已有知识背景出发,使他们获得主动探究数学的快乐。

 1、利用知识迁移引入,同时体现数学源于生活。

 课堂伊始,我让学生回忆角的`概念和如何去量角等已经学过的知识,为本节课新知识的学习做铺垫,接着出示生活中常见的钟面,让学生用量角器量出钟面上时针和分针所成的度数,量出度数后提问:你能根据这些角的大小对角进行分类吗?学生产生疑问,接着我说:学了这节课的知识,大家就能对角进行分类了。这样顺理成章的利用生活中的知识引入新课,体现知识源于生活。

 2、让学生动手操作体验知识的形成过程

 对于直角,学生在二年级的时候已经有了很深的印象,因此在学习直角时,我直接让学生利用长方形纸折出直角,然后用量角器量出直角的度数,让学生更准确的知道直角是多少度。在学习锐角和钝角时,我都是让学生用活动角去感受它们是比直角大还是比直角小,而对于平角和周角的学习,也是通过学生动手用活动角旋转而感受它们的形状,并通过用量角器量而得出度数。这样学生在动手操作的过程中充分感受了各种角的形成过程,而且对度数的取值范围以及准确的度数也有了很深的印象。

 3、给予学生丰富的学习资源和足够的学习空间。

 (1)给学生提供丰富的学习资源:长方形、活动角等。利用学具的直观性特点,组织学生折一折、转一转,在直观操作中体会各种角的形成。给学生提供形象直观的课件,使学生一目了然。

 (2)促使探究活动的开展和深化。让学生通过实践操作、观察、思考、归纳,经历探索新知的过程,体会探索成功的喜悦,并在教师的恰当引导下把探索过程引向深入。

 三、不足分析

 1、对于教材的挖掘不够深

 对于教学平角和周角的认识这一知识时,我只是简单的让学生通过旋转活动角感受了平角和周角的形状,推导出它们的度数,而没有更进一步的让学生画一画,说一说,加深对这两种角的认识,课后我认真的反思后认为还是自己对教材没有很深的理解,只是注重了表面。

 2、重点知识没有讲透彻

 在讲课过程中以及课后的练习中,我发现学生对于各种角以及度数的掌握,只是一知半解,并没有掌握的很透彻,因此我反思得出还是自己在讲授新知识时没有很好的把重点内容讲的很到位,因此导致学生没有真正的知其然并知其所以然。

 3、难点没有很好的突破

 本节课的难点是让学生明白直线和平角的区别,周角和射线的区别,可能由于设计教学时只是简单的考虑根据它们各自的特点就可以区别,而没有更深入的考虑到学生的接受能力和理解能力等,因此部分学生在后面的练习中出现错误。

 4、教学程序出现次序颠倒现象

 在教学完平角后本来应该直接引导学生探究平角和直角的关系,而我在教学完周角以后才共同引导学生探究直角和平角以及周角的关系,在教学程序上出现颠倒。

 5、教学语言不够精炼

 教学语言不太严谨,比如说平角和周角的概念的准确表述等等。

 6、评价方式太单调

 对学生的评价方面做的还不够,不能够很好的调动学生学习的积极性。

 7、课堂气氛不够活跃

 课堂气氛比较沉闷,学生学习和回答问题的积极性不高,可能与教学的设计以及教师的激励有关。

 四、努力方向

 1、继续深入研究教材,学习课标,熟话说“学无止尽”,确实如此,一天不学习就感觉自己落后于别人,因此我继续坚持每天备课时认真的研究教材与教参,以及深入了解学生,结合多方面创造性的使用教材,必须做到每节课都能把握教材的重难点,合理的分配教学时间,顺利的完成教学任务。

 2、加强教学语言的锤炼,适时合理的使用教学评价语言,通过教学我深刻的认识到自己在这方面的不足,因而,我决定在平时的教学中不断摸索学习,严格要求自己,争取做到课课理用精炼的语言让学生学会应学的知识,并且巧妙的利用评价,使学生学的轻松,学的愉快。

 3、精心设计教学,教学设计关系到整节课教学的成败,所以,我在设计教学时一定要做到考虑全面,结合学生年龄特点,结合学生认知能力等等,设计重点突出,体现学生主体地位的合理的教学过程。

 4、适当的运用给予学生评价,学会教学中急中生智,合理处理教学生成资源,教学机智不是一朝一夕就可以练就的,这需要日积月累,需要不断的总结研究,不断的学习参考,虽然这方面能力的练就需要大量时间,大量精力,但我会尽自己所能不断努力。

如何认识在中学数学教学中数学思想方法的地位与作用

数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.

6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。

7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,

扩展资料:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。

参考资料:

百度百科-数学思想

常见的数学思想有哪些?

一、数学思想方法教学与能力的关系

思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。

数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的 一系列问题,已成为数学现代教育研究中的一项重要课题。

从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡,高中学生的思维则是辨证思维的形成。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。

从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。实际上数学中的转化、化归就是实现新旧知识的同化。与同化一样,顺应也在数学思想方法的指导下进行。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。

从学习迁移看,数学思想方法有利于学生学习迁移,特别是原理和态度的迁移,从而可以极大地提高学习质量和数学能力。布鲁纳认为 “学习基本原理的目的,就在于促进记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想方法作为数学学科的“一般原理”,在教学中是至关重要的,因此,对于中学生,不管他们将来从事什么工作,唯有深深地铭刻于头脑中的数学思想方法将随时随地发生作用,使他们受益终生。

二、数学思想方法的教学原理

数学思想方法的教学原理是说明数学思想方法的教学规律的。中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排一般是沿知识的纵方向展开的,大量的数学思想方法只是蕴涵在数学知识的体系之中,并没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。进行数学思想方法的教学,必须在实践中探索规律,以构成数学思想方法教学的指导原则。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。一般来说,应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相成,共同构成数学思想方法教学的指导思想。(如下图所示)

1.渗透性原则:在具体知识教学中,一般不直接点明所应用的数学思想方法,而是通过精心设计的学习情境与教学过程,着意引导学生领会蕴涵在其中的数学思想和方法,使他们在潜移默化中达到理解和掌握。数学思想方法与具体的数学知识虽然是一个有机整体,它们相互关联,相互依存,协同发展,但是具体数学知识的数学并不能替代数学思想方法的数学。一般来说,数学思想方法的教学总是以具体数学知识为载体,在知识的教学过程中实现的。数学思想是对数学知识和方法本质的认识,数学方法是解决数学问题、体现数学思想的手段和工具。所以,数学思想方法具有高度的抽象性与概括性。如果说数学方法尚具有某种外在形式或模式,那么作为一类数学方法的概括的数学思想,却只表现为一种意识或观念,很难找到外在的固定形式。因此,数学思想方法的形式绝不是一朝一夕可以实现的,必须要日积月累,长期渗透才能逐渐为学生所掌握。

数学思想方法的渗透主要是在具体知识的教学过程中实现的。因此,要贯彻好渗透性原则,就要不断优化教学过程。比如,概念的形成过程;公式、法则、性质、定理等结论的推导过程;解题方法的思考过程;知识的小结过程等,只有在这些过程的教学中,数学思想方法才能充分展现它们的活力。取消或压缩教学的思维过程,把数学教学看为知识结论的教学,就失去了渗透数学思想方法的机会,使数学思想方法无有用武之地。

2.反复性原则:学生对数学思想方法的领会和掌握只能遵循从个别到一般,从具体到抽象,从感性到理性,从低级到高级的认识规律。因此,这个认识过程具有长期性和反复性的特征.

从一个较长的学习过程看,学生对每种数学方法的认识都是在反复理解和运用中形成的,其间有一个由低级到高级的螺旋上升过程.如对同一数学思想方法,应该注意其在不同知识阶段的再现,以加强学生对数学思想方法的认识.

另外,由于个体差异的存在,与具体的数学知识相比,学生对数学思想方法的掌握往往表现出更大的不同步性.在教学中,应注意给中差生更多的思考,接受理解的时间,逾越了这个过程,或人为地缩短,会导致学生囫囵吞枣,长此以往,会形成好的更好,差的更差的两极分化局面。

3.系统性原则:与具体的数学知识一样,数学思想方法只有形成具有一定结构的系统,才能更好地发挥其整体功能。数学思想方法有高低层次之别,对于某一种数学思想而言,它所概括的一类数学方法,所串联的具体数学知识,也必须形成自身的体系,才能为学生理解和掌握,这就是数学思想方法教学的系统性原理。

对于数学思想方法的系统性的研究,一般需要从两个方面进行:一方面要研究在每一种具体数学知识的教学中可以进行哪些数学思想方法的教学。另一方面,又要研究一些重要的数学思想方法可以在那些知识点的教学中进行渗透,从而在纵横两个维度上整理出数学思想方法的系统。例如《数列》这一章,就体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。

4.明确性原则:在中学数学各科教材中,数学思想方法的内容显得薄弱,除了一些具体的数学方法比较明确外,一些重要的数学思想方法都没有比较明确和系统的阐述,而它们一直蕴含在基础知识的教学之中。从数学思想方法教学的整个过程来看,只是长期、反复、不明确的渗透,将会影响学生认识从感性到理性的飞跃,妨碍了学生有意识地去掌握和领会。渗透性和明确性是数学思想方法教学辩证的两个方面。因此,在反复渗透的教学过程中,利用适当时机,对某些数学思想方法进行概括、强化和提高,对它的内容、名称、规律、使用方法适度明确化,是掌握、运用数学思想方法并转化为能力的前提,所以数学思想方法的教学应贯彻明确性原则。贯彻数学思想明确化原则,是让学生理解数学思想的关键,是熟练掌握、灵活运用、转化为能力的前提。

例如在解题教学中,可经常采用一题多解,多题一解的教学方法明确数学思想方法。一题多解是运用不同的数学思想方法,寻求多种解法;多题一解又是运用同一种数学思想方法于多种题目之中。但是在教学中,往往缺乏从数学思想方法的高度去阐明其中的本质和通法。我们在解题教学中,将蕴含其中的数学思想方法明确化,有利于学生掌握其中规律,使学生的认识能力产生飞跃。

三、中学数学中的主要思想方法

1.中学数学中的主要思想:函数与方程思想,数形结合思想,分类讨论思想,化归与转化思想。

(1)函数与方程思想:就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,通过对函数的研究,使问题得以解决。通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考察加以解决。例如1990年全国高考题:如果实数x、y满足(x-2)2 + y2 =3,那么的最大值是 。分析:为分离出,先给已知等式两边同除以x2,得.分离变量与,得==.此式表示是的二次函数,易知当=2即x=时,有最大值3,则有最大值.此题不是函数而看成函数,这不正是函数思想的实质吗?

(2)数形结合思想:数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图象、曲线等。数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。数形结合就是抓住数与形之间的内在联系,以“形”直观地表达数,以“数”精确地研究形。华罗庚曾说:“数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。例如:已知x1是方程x+ lgx =3的根,x2是x+10x =3的根,则x1+x2等于( )(A)6(B)3(C)2(D)1 . 分析:构造函数y=lgx,y=10x,y=3-x,由于y=lgx与y=10x互为反函数,图象关于直线y=x对称,而直线y=3-x 与y=x互相垂直,所以y=3-x与y=lgx和y=3-x与y=10x的交点P1(x1,y1)P2(x2,y2)是关于直线y=3-x 与y=x的交点M(x0,y0)对称的,故x1+x2=2 x0=3,选(B),(图略).

(3)分类讨论思想:就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法,分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,使所学知识条理化。

数学中的分类有现象分类和本质分类两种,前一种分类是以分类对象的外部特征、外部关系为根据的,如复数分为实数与虚数等,这种分法看上去一目了然,但不能揭示所分对象之间的本质联系;后一种分类是按对象的本质特征、内部联系进行分类的,如函数按单调性或有界性分类,多面体按柱、锥、台分类等。引起分类讨论的主要原因有:①由数学概念引起的分类讨论;②由数学定理、性质、公式的限制条件引起的分类讨论;③由数学式子的变形所需要的限制条件引起的分类讨论;④由图形的位置和大小的不确定性而引起的分类讨论;⑤对于含有参数的问题要对参数的允许值进行全面的分类讨论。

(4)化归与转化思想:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。化归与转化的一般原则是:①化归目标简单化原则;②和谐统一性原则(化归应朝着使待解决问题在表现形式上趋于和谐,在量、形、关系方面趋于统一的方向进行,使问题的条件与结论表现得更均匀和恰当。);③具体化原则;④标准形式化原则(将待解问题在形式上向该类问题的标准形式化归。标准形式是指已经建立起来的数学模式。如二次函数y=ax2+bx+c (a≠0);椭圆方程);⑤低层次化原则(解决数学问题时,应尽量将高维空间的待解问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归为少元问题解决。这是因为低层次问题比高层次问题更直观、具体、简单)。化归与转化的策略有:①已知与未知的转化(已知条件常含有丰富的内容,发掘其隐含条件,使已知条件朝着明朗化的方向转化,如综合法;对于一个未知的新问题,通过联想,寻找转化为已知的途径,或从结论人手进行转化,如分析法)。②正面与反面的转化(在处理某一问题,按照习惯思维方式从正面思考而遇到困难,甚至不可能时,用逆向思维的方法去解决,往往能达到突破性的效果)。③数与形的转化(数形结合其实质是将抽象的数学语言与直观的图形相结合,可以使许多概念和关系直观而形象,有利于解题途径的探求)。 ④一般与特殊的转化。⑤复杂与简单元的转化(把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是数学解题的一条重要原则)。

高中数学涉及最多的是转化思想,如超越方程代数化、三维空间平面化、复数问题实数化等,为了实现转化,相应地产生了许多的数学方法,如消元法、换元法、图象法、待定系数法、配方法等。通过这些数学方法的使用,使学生充分领略数学思想在数学领域里的地位与作用。

2.中学数学中的基本数学方法

(1)数学中的几种常用求解方法:配方法、消去法、换元法、待定系数法、数学归纳法、坐标法、参数法、构造法、数学模型法等;

(2)数学中的几种重要推理方法:综合法与分析法、完全归纳法与数学归纳法、演绎法、反证法与同一法;

(3)数学中的几种重要科学思维方法:观察与试尝、概括与抽象、分析与综合、特殊与一般、比较与分类、归纳与类比、直觉与顿悟等。

四、数学思想方法教学途径的探索

1.在基础知识的教学过程中,适时渗透数学思想方法

在教学过程中,要注意知识的形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,数学基本技能也是在这个过程学习和发展的,数学的各种能力也是在这个过程中得到培养和锻炼的,数学思想和数学观念也是在这个过程中形成的。

(1)重视概念的形成过程

概念是思维的细胞,是感性认识飞跃到理性认识的结果。而飞跃的实现要经过分析、综合、比较、抽象、概括等思维的逻辑加工,需依据数学思想方法的指导。因而概念教学应当完整地体现这一过程,引导学生揭示隐藏于概念之中的思维内核。例如,高一新教材,数学第一册(上)第二章 函数,有关函数的单调性的知识,是数形结合思想渗透教学的最好材料,教学中要充分抓住这一有利时机。函数f(x)在区间A上是增函数或减函数可直观地用下图示意:

通过图象的直观性,可使学生深刻理解函数的单调性,也使学生对增函数、减函数的定义有更加明确的认识。

(2)引导学生对定理、公式的探索、发现、推导的过程

在定理、性质、法则、公式、规律等的教学中要引导学生积极参与这些结论的探索、发现、推导的过程,不断在数学思想方法指导下,弄清每个结论的因果关系,最后再引导学生归纳得出结论。

例如,高一新教材,数学第一册(上)第三章 数列,教师要不失时机地引导学生观察发现数列是特殊的函数,关于等差数列,由通项公式和求和公式看出,an和Sn都是n的函数,当d≠0时,an是n的一次函数,Sn是n的二次函数。因此可以用一次、二次函数的有关知识来解决等差数列的通项、前n项和的问题。函数的图象是函数的灵魂。an =a1 +(n-1)d的图象是一条直线上的点.Sn =na1 +d的图象是一条抛物线上的点,借助图形的直观,解决问题。

2.在小结复习的教学过程中,揭示、提炼概括数学思想方法

由于同一内容可蕴含几种不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识之中,及时小结、复习以进行强化刺激,让学生在脑海中留下深刻的印象,这样有意识、有目的地结合数学基础知识,揭示、提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又明快地促使学生认识从感性到理性的飞跃。例如,《数列》这一章,体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。复习小结时可配合知识点和典型例题强化训练。

3.抓好运用,不断巩固和深化数学思想方法

在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的精灵,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化.例如2000年全国高考题:设{}是首项为1的正项数列,且,(n=1,2,3…),则它的通项公式= 。

分析:题设给出了数列相邻两项所满足的关系式(递推公式)和首项=1 ,由此可求出,,,从而可猜想出=,由特殊到一般,灵活运用“归纳一猜想一证明”这一探究问题的思维方式猜想出结果(填空题可不必证明)。

如果注意到递推公式是关于和的二次齐次式,也可通过分解因式或解一元二次方程来解决,即灵活运用方程思想求得更简单的递推式,进而运用迭乘法迅速求得.

①(∵>0) (常数) =

 

  ===.

1、符号化思想

在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。

2、分类思想

以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。

3、函数思想

函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。

它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约,从而了解事物的变化趋势及其运动规律。对于函数,《标准》提出了学生各个学段的要求,结合实验教材,小学中年级的要求是“探索具体问题中的数量关系和变化规律”“通过简单实例,了解常量和变量的意义”。

4、化归思想

“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。

5、归纳思想

研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。

归纳法分为不完全归纳法和完全归纳法两种。小学阶段学生接触较多是不完全归纳法。教学四年级上册运算律(以加法交换律和加法结合律为例),就采用了不完全归纳法展开了教学。

6、优化思想

“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。

在教学中渗透优化的策略和方法,及时引导学生对各种方法进行评价与反思,通过对各种不同方法的辨析、比较,帮助学生认识不同方法的特点与优势,达到“去伪存真、去粗存精”的目的,培养学生“多中选优,择优而用”的优化意识,构建数学知识,实现对知识的优化和系统化。

7、数形结合思想

数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。

参考资料:

百度百科词条--数学思想

关于“小学数学分类思想的意义和教学策略”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[山梦媛]投稿,不代表亮亮号立场,如若转载,请注明出处:https://pro99.cn/bkqs/202412-26824.html

(22)

文章推荐

  • 必看教程“雀神麻将有挂吗”(原来真的有挂)-知乎

    您好:雀神麻将有挂吗这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】

    2024年12月15日
    10
  • 推荐一款“微乐内蒙麻将开挂神器”(确实是有挂)-知乎

    您好:微乐内蒙麻将开挂神器这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】安装软件.

    2024年12月16日
    12
  • 什么是度假旅游产品观光旅游产品和度假旅游产品的区别?

    网上科普有关“什么是度假旅游产品观光旅游产品和度假旅游产品的区别?”话题很是火热,小编也是针对什么是度假旅游产品观光旅游产品和度假旅游产品的区别?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1.观光旅游产品和度假旅游产品的区别生态旅游产品是指以保护生态环境

    2024年12月16日
    6
  • 终于呈现“微乐内蒙麻将开挂免费下载安装”(确实是有挂)-知乎

    您好:微乐内蒙麻将开挂免费下载安装这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】安装软件.

    2024年12月19日
    9
  • 必看教程“微乐云南麻将小程序怎么才会赢”(确实是有挂)-知乎

    亲,微乐云南麻将小程序怎么才会赢有没有挂这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件. 微信打

    2024年12月19日
    8
  • 推荐一款“中至鄱阳麻将开挂神器下载”确实真的有挂

    您好:中至鄱阳麻将开挂神器下载这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】安装软件.

    2024年12月20日
    15
  • 急~~~~ 关于地震科普知识的资料整理!_1

    网上科普有关“急~~~~关于地震科普知识的资料整理!”话题很是火热,小编也是针对急~~~~关于地震科普知识的资料整理!寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。地震科普知识资料地震局地震科普知识宣传资料地震是一种自然现象,地球上每年要发生地震500多

    2024年12月21日
    9
  • 必看教程“微信小程序微乐福建麻将有挂吗”(确实是有挂)-知乎

     亲,微信小程序微乐福建麻将有挂吗这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件. ˂pstyle="

    2024年12月21日
    9
  • 推荐一款“北方家乡游戏辅助器免费版”(原来真的有挂)-知乎

    无需打开直接搜索微信操作使用教程:1.亲,北方家乡游戏辅助器免费版这款游戏是可以开挂的,确实有挂.2.在"设置DD辅.助功能DD微信麻.将辅.助工具"里.点击"开启".3.打开工具.在"设置DD新消息

    2024年12月23日
    9
  • 推荐一款“小程序微乐河北麻将胡牌神器”其实确实有挂

    小程序微乐河北麻将胡牌神器无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、小程序微乐河北麻将胡牌神器软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全

    2024年12月27日
    10

发表回复

本站作者后才能评论

评论列表(4条)

  • 山梦媛
    山梦媛 2024年12月22日

    我是亮亮号的签约作者“山梦媛”!

  • 山梦媛
    山梦媛 2024年12月22日

    希望本篇文章《小学数学分类思想的意义和教学策略_1》能对你有所帮助!

  • 山梦媛
    山梦媛 2024年12月22日

    本站[亮亮号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 山梦媛
    山梦媛 2024年12月22日

    本文概览:网上科普有关“小学数学分类思想的意义和教学策略”话题很是火热,小编也是针对小学数学分类思想的意义和教学策略寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...

    联系我们

    邮件:亮亮号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们