关于不可能形的数学典故

网上有关“关于不可能形的数学典故”话题很是火热,小编也是针对关于不可能形的数学典故寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 下面...

网上有关“关于不可能形的数学典故”话题很是火热,小编也是针对关于不可能形的数学典故寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

 下面是我为大家整理的数学典故,希望大家能够从中有所收获!

 1958年美国的《心理学杂志》上,彭罗斯发表了他的不可解的三接棍。如图1-1。他称之为立体的矩形构造:三个直角并显示出垂直,但它是不可能存在于空间的,因为在这里三个直角似乎成了一个?三角形?,但三角形是平面而非立体的图形,三个内角和为180?,而非270?。

 图1-1

 图1-2

 20世纪50年代,罗格和彭罗斯写了论不可能图形的文章,文章描述了一种?没有尽头的楼梯?,踏着楼梯好像是一步一步地上升,然而楼梯都是停留在一个水平面上。如图1-2。

 图1-3

 荷兰著名画家埃舍尔被认为是20世纪公认的视错觉画大师。他的作品以其深刻的数学、物理含义特别得到科学家的重视。如图1-3,他为第十届国际数学大会(1981年奥地利)所作的会标,就是一个三维空间不可能的图形。

周自相乘以高乘之十二而一出自哪个典故

1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的

「国宝」锡里尼哇沙?拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而

发行的。

拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,

靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。

在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独

的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真

正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是

肺病却蚕食了他的生命,他在三十三岁时悄然逝去。

他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小

时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师

在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生

兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达

高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几

何的兴趣。

有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个

。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师

下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:

「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差

不多在这个时候他对等差,等比级数的性质自己作了研究。

在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,

有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把

整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后

来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,

偷偷地放到裏的屋梁上。

他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用

数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微

积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,

他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。

在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获

得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,

结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并

参加1907年的「文科第一考试」,。是又失败了。

在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补

习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几

何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏

,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他

生活困难,几次在中餐时邀他在家裏吃些东西。

根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的

女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费

用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。

拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为

拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些

钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学

才能。

接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德

拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就

对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请

你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计

算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的

字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭

都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心

里是很惭愧,已经有一个月不去拿钱了。

很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十

五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学

家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定

理和公式。

哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果

,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来

到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉

玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地

用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论

的知识。比他教给拉玛奴江的还多。

从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个

虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自

己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身

上有无名的疼痛。

后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地

教授讲他在病中的一个故事:

有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛

奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:

「这是最小的整数能用二种方法来表示二个整数的立方的和。」

(1729=13+123=93+103)

拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一

些预测的结果,还是目前数学家正想法证明的。

他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等

数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他

矗立一个大理半身像。

如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿

死的小孩,他们有许多会是未来的拉玛奴江!」

“周自相乘,以高乘之,十二而之”出自《九章算术》

您说的应该是“周自相乘,以高乘之,十二而之”吧。《九章算术》中记载的圆柱体积的计算方法是“周自相乘,以高乘之,十二而一”,也就是底面周长的平方乘高,再除以12。

《九章算术》(TheNineChaptersontheMathematicalArt)是《算经十书》中最重要的一部著作。《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。

关于“关于不可能形的数学典故”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[寄天]投稿,不代表亮亮号立场,如若转载,请注明出处:https://pro99.cn/bkqs/202412-19803.html

(5)

文章推荐

发表回复

本站作者后才能评论

评论列表(4条)

  • 寄天
    寄天 2024年12月20日

    我是亮亮号的签约作者“寄天”!

  • 寄天
    寄天 2024年12月20日

    希望本篇文章《关于不可能形的数学典故》能对你有所帮助!

  • 寄天
    寄天 2024年12月20日

    本站[亮亮号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 寄天
    寄天 2024年12月20日

    本文概览:网上有关“关于不可能形的数学典故”话题很是火热,小编也是针对关于不可能形的数学典故寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 下面...

    联系我们

    邮件:亮亮号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们